Tohoku Univ. Technology

High-sensitivity temperature sensor

Ultrasensitive microscale temperature sensing—flexible design possible

Overview

In biotechnology and healthcare, it is crucial to detect small temperature changes and heat generation with high sensitivity. This invention achieves remarkable temperature sensitivity by using ionic liquids with a high Seebeck coefficient in thermocouples, far surpassing conventional solid-state materials. The device employs a microfluidic chip, allowing the liquids to be physically separated but electrically connected, enabling flexible sensor structures. This system makes it possible to conduct ultra-sensitive temperature measurements even on curved and irregular surfaces, expanding the practical utility of temperature sensing well beyond what is possible with traditional solid-state sensors.

Product Application

- Ultrasensitive microscale temperature sensing
- Medical and healthcare body temperature measurement
- Industrial temperature measurement

IP Data

IP No. : JP 7164177

Inventors: INOMATA Naoki, ONO Takahito

Admin No : T18-105

Features · Outstandings

Temperature sensors

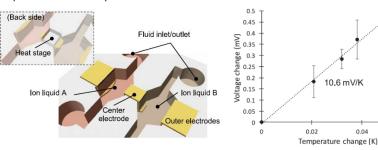
Thermocouple

Thermistor

Principle

Seebeck effect

Resistance change


Challenges

Low sensitivity; cannot be made flexible.

Low sensitivity; not flexible.

The invention*1

Liquid thermocouple with microstructure

- Ionic liquids flow through the channels : PEG-NaOH, Iodine soln.
- Sample placed on central electrode : Electrode size ~700µm
- Detect the smallest heat change 10.6 mV/K sensitivity.
- * The Seebeck coefficient of typical materials is several hundred µV/K

<u>Inquiries welcome from companies interested in</u> commercialization or measurement with this device.

Contact

*1 DOI: 10.1109/LSENS.2019.2912418

Tohoku Techno Arch Co., Ltd.

Please visit CONTACT here